Directed molecular evolution by somatic hypermutation
نویسندگان
چکیده
منابع مشابه
Directed evolution of mammalian anti-apoptosis proteins by somatic hypermutation.
Recently, researchers have created novel fluorescent proteins by harnessing the somatic hypermutation ability of B cells. In this study, we examined if this approach could be used to evolve a non-fluorescent protein, namely the anti-apoptosis protein Bcl-x(L), using the Ramos B-cell line. After demonstrating that Ramos cells were capable of mutating a heterologous bcl-x(L) transgene, the cells ...
متن کاملGenome-wide somatic hypermutation.
DNA mutagenesis is generally considered harmful. Yet activated B cells normally mutate the Ig loci. Because this somatic hypermutation is potentially dangerous, it has been hypothesized that mutations do not occur throughout the genome but instead are actively targeted to the Ig loci. Here we challenge this longstanding and widely accepted hypothesis. We demonstrate that hypermutation requires ...
متن کاملEvolution of new nonantibody proteins via iterative somatic hypermutation.
B lymphocytes use somatic hypermutation (SHM) to optimize immunoglobulins. Although SHM can rescue single point mutations deliberately introduced into nonimmunoglobulin genes, such experiments do not show whether SHM can efficiently evolve challenging novel phenotypes requiring multiple unforeseeable mutations in nonantibody proteins. We have now iterated SHM over 23 rounds of fluorescence-acti...
متن کاملImmunoglobulin somatic hypermutation.
The immunoglobulin (Ig) repertoire achieves functional diversification through several somatic alterations of the Ig locus. One of these processes, somatic hypermutation (SHM), deposits point mutations into the variable region of the Ig gene to generate higher-affinity variants. Activation-induced cytidine deaminase (AID) converts cytidine to uridine to initiate the hypermutation process. Error...
متن کاملThe regulation of somatic hypermutation.
Somatic hypermutation and class switch recombination cause genetic alterations in immunoglobulin (Ig) genes, which underlie the generation of the secondary antibody repertoire in B lymphocytes. Both processes require activation-induced cytidine deaminase (AID), whose mechanism of action in not yet known in detail, but which mediates the accumulation of point mutations in the Ig locus. This high...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Protein Engineering Design and Selection
سال: 2004
ISSN: 1741-0126,1741-0134
DOI: 10.1093/protein/gzh080